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Abstract 

Stress testing has recently been an important risk management tool to both 
complement and supplement risk measurement methods under different 
stress scenarios. It is already a part of Basel II capital rules introduced by 
the Basel Committee on Banking Supervision. This paper performs thorough 
backtests under widely used risk models in combination with different 
conditional volatility frameworks to identify the most suitable risk model 
specification for structured energy instruments mostly traded in financial 
markets and conducts a stress test based on the specified models. We find 
strong evidence that, for a smaller estimation window, the volatility model 
that incorporates asymmetric volatility response together with Student’s t 
innovations clearly outperforms symmetric ones. However, the conditional 
empirical model is superior when larger estimation windows are 
considered. Also, it is shown that the backtest performances of volatility 
models are substantially affected by the distribution selection. Stress test 
results clearly indicate that energy shocks can lead greater stress losses 
than those observed in major currency pairs. Associated with an 
appropriate initial shock and estimation window size, the stress losses 
estimated by the selected models favorably compare with past shocks in all 
but one extraordinary case: the 1st Gulf War scenarios ended in the largest 
ever price drops. Referring to Basel II capital calculation rules, the results 
imply the need for significant risk capital buffers for energy portfolios.   
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Özet 

Stres testleri, farklı stres senaryoları altında kullanılan tamamlayıcı ve 
destekleyici risk yönetim metotları için önemli bir risk yönetim aracı haline 
gelmiştir. Hâlihazırda bu testler Basel Bankacılık Denetim Komitesi 
tarafından düzenlenmiş olan Basel II sermaye kurallarının da bir 
parçasıdır. Bu çalışma, finansal piyasalarda sıklıkla işlem gören 
yapılandırılmış enerji enstrümanları için en uygun risk modeli bileşimini 
belirlemek amacıyla, farklı koşullu oynaklık yapıları ile birlikte çoğunlukla 
kullanılan risk modelleri üzerinde kapsamlı geriye dönük testler sunuyor ve 
belirlenen modeller üzerinde bir stres testi uyguluyor. Daha küçük bir 
tahmin penceresi için, Student’s t inovasyonları ile birlikte asimetrik 
oynaklık tepkilerine olanak sağlayan oynaklık modelinin simetrik 
modellerden açıkça üstün bir performans sergilediğine dair güçlü bulgulara 
ulaşıyoruz. Ancak bunun yanında, daha uzun tahmin pencerelerinde koşullu 
ampirik model daha üstün bir görüntü çiziyor. Bununla birlikte, oynaklık 
modellerinin sergilediği geriye dönük test performansların dağılım seçimine 
paralel olarak önemli ölçüde etkilendiği görülüyor. Stres testi sonuçları, 
enerji şoklarının yol açabileceği stres kayıplarının büyük para birimi 
çiftlerine ait kur değerlerinde gözlenen kayıplardan daha büyük 
olabileceğine işaret ediyor.  Uygun bir başlangıç şok değeri ve tahmin 
penceresi uzunluğu ile ilişkilendirildiğinde, seçilen risk modelleri tarafından 
tahmin edilen stres kayıpları, geçmiş dönemde en yüksek fiyat düşüşleri ile 
sonuçlanan Birinci Körfez Savaşı senaryolarını içeren olağandışı bir vaka 
haricinde geçmiş şoklarla makul bir şekilde örtüşüyor. Basel II sermaye 
hesaplama kuralları dikkate alındığında sonuçlar, enerji portföyleri için 
ciddi sermaye takviyelerine ihtiyaç duyulduğuna işaret ediyor.  

 

Anahtar Kelimeler: Enerji türev ürünler, Stres testi, Koşullu oynaklık 
modelleri, Riske maruz değer 
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1. Preamble 
The Basel Committee on Banking Supervision (2004) revised its 

1988 Capital Accord to incorporate market risks and recommended that 
the senior management review the results of stress testing periodically, 
use them in the assessment of capital adequacy, and reflect their 
implications in the policies and limits set by management and the board 
of directors. Stress tests continue to focus primarily on traded market 
portfolios. These portfolios are well suited to stress testing as they can be 
marked to market on a regular basis. As from the end of 1997, banks are 
required to measure and apply capital charges in respect of their market 
risks in addition to their credit risks. However, most of the stress testing 
approaches are still exposed to risk model misspecification threat and 
even some of them have yet to have an underlying risk model. A survey 
conducted by the Basel Committee points out that the historical and 
hypothetical events form the basis of a great majority of the stress tests 
(Committee on the Global Financial System, 2005). 

Increasingly, individual institutions are taking into account 
information about plausible worst case scenarios and where it is deemed 
prudent, taking action to avoid the adverse effects of these events. 
However, yet no coherent stress testing framework has been applied to 
much more volatile energy-related financial products. Therefore, this 
paper aims at introducing a model-based approach for the stress testing of 
a certain set of liquid energy contracts that can incorporate both volatility 
clustering and heavy-tails assumptions, and explores the potential impact 
of plausible price shocks that can occur in energy markets on the 
portfolios held by a variety of institutions for different purposes, varying 
from commodity positions hedging to even market speculation. The 
implications of stress test results are also examined in the Basel II 
context. This helps us enhance the risk-awareness of investors, senior 
management and stakeholders, as well as regulatory and supervisory 
authorities, against extreme risks which would arise from low-probability 
events. 

Thus, this study first examines the one-day-ahead forecasting 
accuracies of three mostly used volatility models under two distributional 
assumptions using the rolling window approach described by Brooks 
(2007) and, then performs a stress test based on the risk model(s) which is 
(are) found relatively more robust. Forecast accuracies are evaluated 
accordingly with two well-known backtesting statistics. Recursive VaR 
estimation is expected to reveal the consistency of any risk model under 
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different data samples while the different distributions allow the selection 
of a model for the return tails. For statistical robustness, this study uses 
three different energy futures series to avoid outputs rely heavily on one 
specific series. Having almost 43,000 one-step-ahead VaR values 
estimated for all series and estimation windows with a specified 
distribution and volatility model, we produce nearly 1,300,000 one-step-
ahead VaR forecasts when all volatility models, presumed distributions 
and asset positions (long or short) are considered.  

The backtest results clearly reveal the fact that Gaussian 
distribution is not appropriate for the most liquid energy-related futures 
contracts traded in financial markets. Another interesting result is that, 
given fat-tailed innovations, the conditional volatility models 
incorporating asymmetric volatility response are superior to traditional 
GARCH setting proposed by Bollerslev (1986), particularly at higher 
confidence levels. It holds for all series and almost all confidence levels 
considered. This can be interpreted as an evidence for the existence of 
asymmetric returns in energy markets. Lastly, it is found that the size of 
the estimation window has significant effects on backtest performances: 
working with a larger estimation window leads to more accurate results in 
conditional empirical case, while it causes the asymmetric GARCH with 
Student’s t innovations and GARCH with Student’s t innovations 
alternative combinations to behave in a more conservative way than 
expected.  

Model-based stress loss estimations reveals the fact that the risk 
models that performed better in backtests are able to generate consistent 
price paths for artificial stressful periods (triggered by different initial tail 
events), which mostly match the historical price discontinuities observed 
in previous energy crises. Taking into account a minimum of 10-day risk 
horizon, which Basel II Capital Accord also requires in internal risk 
calculations, the selected models predict significant lower bounds for 
necessary risk capital to absorb potential large losses in energy portfolios. 

2. Origins and Related Studies 
The appearance of stress tests in the finance literature is gradual. 

The roots can be traced back to market risk amendment to the first capital 
accord (Basel Committee on Banking Supervision, 1996). However, the 
second accord included a more comprehensive definition of stress testing 
and gave a special emphasis on it. According to this new accord, 
supervisory authorities would not approve the use of internal risk models 
unless they were supplemented with stress tests. Moreover, the 
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institutions would be required not only to follow a routine and rigorous 
stress testing, but also to reflect the results in the assessment of capital 
adequacy as well as the management policies. It was also recommended 
that the stress scenarios covered a range of factors that can create 
extraordinary losses or gains and make the control of market risk very 
difficult (Basel Committee on Banking Supervision, 2004).     

The green shoots of foundations of the bridge between stress tests 
and risk models starts with the work of Kupiec (1998) who examined 
cross market effects resulting from a market shock. Aragones et al. (2001) 
criticized traditional stress testing approaches for being inevitably 
subjective, difficult to backtest and not providing probabilistic outcome to 
allow sound interpretations about their results. Alexander and Sheedy 
(2008), in their most recent study, proposed a stress testing methodology 
based on a set of most suitable risk models on which a rigorous set of 
backtests are conducted to eliminate model risk.   

The remaining parts are organized as the following: Sections 3 and 
4 shortly introduce the data and risk models included. Then, in Section 5, 
will follow the backtests and the process for selecting the best-performing 
risk models. Section 6 covers the stress testing methodology in detail and 
performs stress tests based on the risk models outperformed in the 
previous section. The last but not the least, Section 7 deals with the 
interpretation of the results and draws some implications for risk capital 
which can be deemed useful for regulatory and supervisory authorities. 
Finally, Section 8 concludes. 

3. Data 
The data used in this study are obtained from DataStream and 

consist of a group of highly liquid energy futures which are traded on 
NYMEX. Selection is based on the purpose of exploring the effects of a 
stress event on the value of highly liquid energy contracts and comparing 
the performance of different risk models in capturing extreme returns in 
more volatile markets. Among the NYMEX futures contracts, Cushing 
settled crude oil, natural gas and heating oil futures contract price series 
are used in analyses. All series include their most recent observations in 
February 2009. Crude oil series comprise of a total of 6484 observations 
covering a full daily data starting from the first quarter of 1983, while 
heating oil has a total of 7300 daily returns from January 1980. Natural 
gas has a relatively small sample size consisting of 3772 observations 
starting from January 1994. The price series are converted into returns 
using the usual logarithmic transformation. Table 1 consists of summary 
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statistics for these three return series. All of them clearly appear to be 
non-normal as evident leptokurtosis suggests. However, another important 
point here is that both crude and heating oil returns are negatively skewed 
implying that the volatility models which allow asymmetry in return 
distributions are likely to outperform symmetric ones.  

Table 1: Summary Statistics 

  Crude Oil Natural Gas Heating Oil 

Mean 0.004% 0.019% 0.006% 

Standard Deviation 2.44% 3.81% 2.34% 

Kurtosis 16.82 6.99 20.33 

Skewness -0.94 0.07 -1.53 

Min/Max -40.00/16.40% -37.60/32.40% -39.10/14.00% 

 

At this point, it is worth noting that the data should include at least 
one turbulent period so that we can make sure that the model is provided 
with sufficient input to generate extreme enough outputs at the end of the 
stress horizon.  

4. Market Risk Models 

4.1 Conditional Normal 
This set of symmetric risk models included in this study consists 

of simple GARCH model which presumes symmetric returns around zero 
and Gaussian innovations. Specifically, the mean adjusted returns are 
assumed to be conditionally normally distributed with conditional 
variance following the symmetric GARCH(1,1) process of Bollerslev 
(1986):  
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To calculate VaR in one-step-ahead forecasts for backtesting 
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purposes, we simply produce volatility forecasts using the appropriate 
model parameters as well as the most recent conditional variance and 
innovation terms. That is, for a long (short) position, 1,αVaR  corresponds 
to the absolute value of the lower (upper)  α*100  percentile of the 
innovations drawn from the assumed conditional distribution plus the 
mean equation constant. However, in calculation process of s-day stress 
loss, following Alexander and Sheedy (2008), we do not simply plug the 
s-day variance in the GARCH forecast process since this method assumes 
that all the innovations are ‘typical’ during the stressful market 
conditions. This alternative would suffer from the lack of ability to 
produce large shocks during stress horizon which would in turn not cause 
volatility increases. Thus, we employ Monte Carlo simulation to eliminate 
this problem that will be discussed later on.  

4.2 Conditional Student’s t 

Heavy-tailed distributions have been mostly combined with 
GARCH models in VaR estimation literature. The method is identical to 
the one described in the previous part, but now innovations are drawn 
from Student’s t distribution with v  degrees of freedom.  That is: 

 

vt tvv ~))2/(( 5.0−ε  

 

Using a heavy-tailed distribution is supposed to help us capture 
the conditional excess kurtosis in empirical data. 

4.3 Conditional Empirical 
Using past returns directly to forecast future changes in portfolio 

value is popular in the industry, though unconditionally.  Here we adopt a 
slightly different approach which is similar to the one described in 
Barone-Adesi et al. (1998). We make no distributional assumption about 
the standardized past returns, other than the assumption that there is a 
mild dependence between them. We first fit either a normal or a Student’s 
t GARCH process to historical data before we standardize each return in 
the sample by subtracting mean and then dividing them by the 
corresponding in-sample conditional standard deviation estimate. Once 
we standardize them, the returns are scaled to the conditional standard 
deviation estimate for the day on which the VaR is estimated. That is, the 
standardized returns are multiplied by the current standard deviation 
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estimate to obtain the sample of scaled returns. To calculate 1,αVaR , we 
simply draw the lower (upper) α*100  percentile of scaled returns based 
on whether the asset is long (short). To calculate s-day stress loss, the 
GARCH model is simulated forward over the s-day risk horizon using 
innovations that are sample from scaled past returns. 

4.4 Asymmetric1 Conditional Normal 

Unlike the conventional approach in currency markets, we do not 
discard the use of asymmetric GARCH models for two reasons. First, it is 
not a stylized fact to use only symmetric volatility models in energy 
markets. Second, all of the series considered in this study, except natural 
gas, exhibit significant skewness (even when means are subtracted) 
implying the need for including asymmetric models as well as symmetric 
ones. We use the exponential GARCH (EGARCH) model proposed by 
Nelson (1991) where the disturbance terms are assumed to fit either to 
Normal or Student’s t density. The conditional variance in the EGARCH 
model can be expressed by in a variety of ways, but one among them can 
be written as (under normal innovations assumption):  
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4.5 Asymmetric Conditional Student’s t 
An alternative way of expressing the asymmetric model 

introduced above would be (under Student’s t innovations assumption): 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Γ

−
Γ−

−+++=
−

−

−

−
−

)
2

(

)
2

1(2)ln()ln(
2

1

1

2
1

12
121

2

v

v
v

t

t

t

t
tt πσ

ε
ω

σ

ε
γσξξσ  

where γ  is the leverage parameter. 

The EGARCH model also allows for potential asymmetries via γ  
parameter while necessitates no non-negativity constraints since 2

tσ  term 
would be positive even though )ln( 2

tσ  would not. Before completing 
model discussion, it is worth noting that we employed only (p,q)=(1,1) 
type of conditional volatility models since the former studies do not 
                                                            
1 The volatility responses are not restricted but allowed to be asymmetric. 
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suggest any evidence about the superiority of more sophisticated models. 
Hansen and Lunde (2005) compared 330 ARCH-type models in terms of 
their ability to fit conditional volatility and found no evidence that more 
complicated settings could cast shadow over the performance of the 
GARCH(1,1) setting. However, they concluded that the GARCH(1,1) was 
obviously inferior to the ones that can incorporate leverage effects (i.e. 
asymmetries).  

5. Backtests 

This section is devoted to the efforts of selecting the most suitable 
model(s) for stress testing purposes. To better reflect the effects of a stress 
event on the value of futures contracts written on energy commodities, we 
include low probability regions (99.5% and 99.8%) as well as typical 
99%. This also helps us reveal some distinguishing skills of heavy-tailed 
distributions which are argued to perform better in tail extremes. The 
inclusion of a relatively shorter estimation window takes into account the 
findings of Hoppe (1998) who argued that smaller sample sizes could lead 
to more accurate VaR estimates than larger ones. Frey and Michaud 
(1997) also argued that a small sample size is better in capturing structural 
changes. However, the Basel regulations insist on an estimation window 
of more than or equal to 1 year (around 250 trading days). Therefore, we 
consider a range of estimation windows including both larger and smaller 
ones: 250, 1000 and 2000 trading days. 

The most suitable ones among candidate models were filtered by 
two different test statistics: the test for coverage by Kupiec (1995) and the 
test for conditional coverage by Christoffersen (1998). The former has a 
null hypothesis that the actual number of violations is equal to the 
expected number of violations while the latter tests the null hypothesis 
that the violations are not clustered over time.  

We followed a thorough backtest methodology to reduce the 
model risk in the risk models that we will use for stress testing purposes. 
We recursively calculate one-day-ahead VaR estimates using rolling 
window method where each estimation window has 250, 1000 or 2000 
daily observations. Thus, considering an estimation window of 250 days, 
the first volatility estimate occurs on 251st trading day and goes up to 
February 2009. This method allows us to obtain nearly 43,000 one-step-
ahead VaR projections for all series considered and all estimation 
windows included, implying almost 1,300,000 one-step-ahead VaR 
estimates which are used in backtest process when all distributions, 
volatility models and asset positions are taken into account. At the end of 
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each estimation period, actual profits/losses are calculated and any case in 
which the actual loss is greater than VaR estimate in absolute value was 
recorded as an exceedance. Afterwards these exceedances, together with 
their probable time-varying frequencies were used as inputs for tests for 
conditional and unconditional coverage. Results are shown in Table 2 and 
Table 3 for each of the five distribution-variance model specifications. 
The greater the p-values, the more confident the null hypotheses are 
accepted and the more the model is suitable for stress testing.     

 

Table 2: Backtest Results (Estimation Window: 250 Days) 

    

(1) 

Conditional normal

(2) Asymmetric 

Conditional 

normal 

(3) 

Conditional  

Student's t 

(4) Asymmetric   

Conditional  

Student's t 

(5) 

Conditional  

empirical 

  

100*(1-α) 
% 

p- 

tfcc 

p-

tfuc 
% 

p-

tfcc 

p- 

tfuc 
% 

p- 

tfcc 

p- 

tfuc 
% 

p- 

tfcc 

p- 

tfuc 
% 

p- 

tfcc 

p- 

tfuc 

long     

Crude 

Oil 

99 1.91 0.00 0.00 2.20 0.00 0.00 0.85 10.86 22.28 0.96 6.96 76.53 1.48 0.03 0.04 

99.5 1.30 0.00 0.00 1.41 0.00 0.00 0.47 28.89 69.40 0.56 34.29 49.95 0.87 0.02 0.02 

99.8 0.85 0.00 0.00 1.03 0.00 0.00 0.26 60.56 33.73 0.32 13.68 4.97 0.66 0.00 0.00 

short    

Crude 

Oil 

99 1.56 0.01 0.00 1.57 0.01 0.00 0.59 0.11 0.05 0.79 3.73 7.79 1.57 0.01 0.00 

99.5 1.09 0.00 0.00 1.16 0.00 0.00 0.35 4.15 8.22 0.40 46.85 25.15 0.75 2.03 0.82 

99.8 0.77 0.00 0.00 0.69 0.00 0.00 0.16 2.99 46.89 0.22 88.48 66.98 0.48 0.00 0.00 

long  

Natural 

Gas 

99 1.33 8.71 5.75 1.76 0.02 0.00 0.43 0.05 0.01 0.77 15.61 14.70 1.25 20.52 15.18 

99.5 0.88 1.17 0.39 1.19 0.00 0.00 0.26 7.43 2.32 0.31 22.93 8.99 0.62 52.26 31.22 

99.8 0.51 0.24 0.06 0.74 0.00 0.00 0.03 1.66 0.42 0.14 71.36 41.63 0.31 37.35 16.80 

short  

Natural 

Gas 

99 2.13 0.00 0.00 2.22 0.00 0.00 0.74 21.62 10.19 0.82 43.63 27.80 1.16 39.07 33.92 

99.5 1.25 0.00 0.00 1.59 0.00 0.00 0.37 48.96 24.85 0.45 86.17 69.69 0.68 29.75 14.77 

99.8 0.94 0.00 0.00 1.08 0.00 0.00 0.23 92.24 72.36 0.28 56.07 29.42 0.45 1.42 0.38 

long  

Heating 

Oil 

99 1.96 0.00 0.00 2.21 NA NA 0.89 57.27 36.12 1.01 94.80 95.14 1.46 0.12 0.03 

99.5 1.56 0.00 0.00 1.77 0.00 0.00 0.51 82.46 89.89 0.60 28.31 26.83 0.81 0.27 0.08 

99.8 0.99 0.00 0.00 1.29 0.00 0.00 0.24 72.49 45.37 0.34 5.21 1.65 0.54 0.00 0.00 

short 

Heating 

Oil 

99 1.65 0.00 0.00 1.77 0.00 0.00 0.60 0.06 0.02 0.65 0.45 0.17 1.26 7.79 3.33 

99.5 1.04 0.00 0.00 1.21 0.00 0.00 0.34 2.59 4.38 0.44 24.14 46.42 0.81 0.08 0.08 

99.8 0.65 0.00 0.00 0.77 0.00 0.00 0.07 1.98 0.51 0.20 97.22 97.91 0.48 0.00 0.00 

%: proportion of observed model violations, p-tfcc: p-value for the test of conditional 
coverage, p-tfuc: p-value for the test of unconditional coverage 
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As p-values in parts (1) and (2) of Table 2 suggest, the assumption 
of conditionally normal-distributed returns cannot be justified, either in 
the symmetric or asymmetric models. Also the estimation window size 
cannot change this result. The null hypotheses that (i) the actual number 
of violations is equal to the expected number of violations and (ii) the 
violations are spread evenly over time are comfortably rejected in most of 
the cases. Column (3) of Table 2 shows that the symmetric GARCH 
model under heavy-tails assumption gives promising results to some 
extent except some of the situations where the crude and heating oil 
contracts are short and natural gas contract is long. This situation can be 
attributed to asymmetric returns that we evidenced in the series. That is, 
negatively skewed crude and heating oil returns reduce the number of 
potential shocks in the upside causing symmetric models to appear too 
conservative in short portfolio case. Similar interpretation can be made 
for slightly positively skewed natural gas case. Moreover, in a great 
majority of the cases in which the hypothesis that the actual number of 
model exceedances is equal to the expected violations is rejected, the p-
values of the test for conditional coverage also indicate that the 
exceedances are clustered.  Column (4) of Table 2 shows that the 
EGARCH model eliminates the violation clustering problem resulted 
from the strongly asymmetric structure of crude and heating oil returns. 
At 95% confidence level, in 16 out of 18 cases (89%), the number of 
return shocks captured by the model is found to be very close to what is 
expected beforehand.  Again at the same level of confidence, and in 16 out 
of 18 cases, we can conclude that the violations are spread evenly over 
time, i.e. they are not clustered. What is interesting in Table 2 is that the 
conditional empirical model results are not as satisfying as its popularity 
in the industry suggests. However, this might be due to insufficient length 
of estimation window, as it will be evidenced by the results observed in 
larger estimation windows (see Table 3). 

As it can be inferred from the columns (1) and (2) of Table 3, 
working with a larger estimation window is clearly not enough to justify 
normality assumption for the innovations. However, it is also worth 
noting that both symmetric and asymmetric models with heavy-tailed 
disturbances now suffer from too conservative results (columns (3)-(4)). 
To illustrate, the observed number of model violations ranges between 
0.11% and 0.87% while it is expected to be around 1%. Although this 
situation still prevents the position holder from incurring larger losses 
than its capital provisions, it is not desirable to tie up in capital more 
resources than needed. As the last column of Table 3 suggests, given an 
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estimation window of nearly 4 years, conditional empirical model appears 
to be the best of all the risk models considered. In none of 18 cases can 
we reject the unconditional coverage measure at the 95% confidence 
level, while conditional coverage test implies clustering in a single case 
with a slight difference when 95% confidence level is considered.  

  

Table 3: Backtest Results (Estimation Window: 1000 Days) 

    
(1) 

Conditional normal 

(2) Asymmetric 

Conditional  

normal 

(3) 

Conditional 

Student's t 

(4) Asymmetric   

Conditional 

Student's t 

(5) 

Conditional 

empirical 

  

100*(1-α) 
% 

p- 

tfcc 

p- 

tfuc 
% 

p- 

tfcc 

p- 

tfuc 
% 

p- 

tfcc 

p- 

tfuc 
% 

p- 

tfcc 

p- 

tfuc 
% 

p- 

tfcc 

p- 

tfuc 

long    

Crude 

Oil 

99 1.57 0.02 0.01 1.70 0.00 0.00 0.51 0.01 0.01 0.64 0.75 0.39 1.02 86.37 87.43 

99.5 1.04 0.00 0.00 0.98 0.00 0.00 0.22 0.39 0.09 0.26 13.73 5.46 0.53 81.92 76.37 

99.8 0.64 0.00 0.00 0.66 0.00 0.00 0.07 5.29 1.54 0.09 12.91 4.33 0.26 65.55 37.93 

short   

Crude 

Oil 

99 1.39 1.77 0.66 1.28 8.44 4.83 0.38 0.00 0.00 0.36 0.00 0.00 1.02 86.37 87.43 

99.5 0.88 0.12 0.04 0.77 2.53 0.96 0.15 0.01 0.00 0.18 0.06 0.01 0.49 87.22 93.65 

99.8 0.53 0.00 0.00 0.47 0.05 0.01 0.07 5.29 1.54 0.11 25.75 10.03 0.29 34.65 15.46 

long 

Natural 

Gas 

99 1.12 58.23 53.76 1.26 26.14 18.11 0.11 0.00 0.00 0.18 0.00 0.00 1.01 75.02 95.59 

99.5 0.69 37.12 18.97 0.76 17.24 7.38 0.04 0.00 0.00 0.07 10.03 9.01 0.54 87.99 76.09 

99.8 0.40 11.86 4.10 0.40 11.86 4.10 0.04 5.88 1.73 0.04 5.88 1.73 0.22 96.90 84.76 

short 

Natural 

Gas 

99 1.66 0.60 0.14 1.62 0.98 0.25 0.40 0.13 0.03 0.43 8.31 10.07 0.90 69.35 59.88 

99.5 1.73 0.00 0.00 1.73 0.00 0.00 0.36 53.08 27.45 0.47 91.54 81.60 0.43 83.28 60.91 

99.8 1.19 0.00 0.00 1.23 0.00 0.00 0.11 49.40 23.61 0.11 49.40 23.61 0.18 96.42 81.47 

long 

Heating 

Oil 

99 1.78 0.00 0.00 0.00 0.00 1.95 0.59 0.14 0.04 0.67 0.67 0.47 1.02 91.33 89.85 

99.5 1.32 0.00 0.00 1.44 0.00 0.00 0.29 3.05 0.87 0.29 3.05 0.87 0.62 34.03 19.62 

99.8 0.89 0.00 0.00 1.02 0.00 0.00 0.17 88.22 64.50 0.17 88.22 64.50 0.25 62.85 35.73 

short 

Heating 

Oil 

99 2.21 0.00 0.00 2.22 0.00 0.00 0.83 7.54 15.13 0.87 2.65 30.11 1.19 19.94 13.98 

99.5 1.57 0.00 0.00 1.59 0.00 0.00 0.44 23.73 52.45 0.52 37.36 78.97 0.60 25.89 26.05 

99.8 1.17 0.00 0.00 1.22 0.00 0.00 0.19 5.51 86.50 0.21 6.55 91.02 0.30 3.43 9.33 

%: proportion of observed model violations, p-tfcc: p-value for the test of conditional 
coverage, p-tfuc: p-value for the test of unconditional coverage 
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Using an estimation window of 2000 observations provides a set 
of similar backtest results2 to those included in Table 3. In order to 
conserve space, we do not include them here.  

The analysis so far suggests that both the conditional empirical 
model and the asymmetric EGARCH model in combination with a fat-
tailed distribution can adequately describe the distribution of energy 
derivative returns. Our results confirm that, in conditional empirical case, 
large estimation windows (1000, 2000 days) are preferable to smaller one 
(250 days) for risk estimation. However, it is the reverse when 
asymmetric conditional Student’s t model is the case due to its 
excessively conservative risk estimations observed in larger estimation 
windows. 

6. Stress Testing Methodology 

This section incorporates the three characteristics brought under 
the spotlight in the previous section: heavy-tailed returns assumption, 
volatility clustering and (asymmetric) leverage effect. The methodology 
adopted in this paper is proposed by Alexander and Sheedy (2008). First, 
a stress event based on a heavy-tailed distribution is defined below and 
the subsequent market response to that shock is simulated employing a 
conditional volatility model to allow volatility clustering and potential 
asymmetric volatility responses. Stress results belong to the two models 
mentioned above, while the poor-performing conditional normal model is 
also included for comparison of stress losses. 

6.1 Defining A Stress Event 

An initial shock (or a stress event) can be defined as an 
unanticipated but plausible event that causes a large discontinuity in 
prices. An alternative to recommendation of the Committee on the Global 
Financial System (2005) (i.e. the method of basing such kind of an event 
on a historical of hypothetical event by taking the experiences of 
management into account) is to consider extreme outcomes defined by the 
risk model. That is, for a long position, VaR calculated using a typically 
low probability region, say sα , can be used as a stress event and the 
results subsequent volatility hikes can be explored. Then an initial shock 
at the beginning of the stress period T , say *

Tε  can be derived from the 

                                                            
2 The results for a 2000-day estimation window are available upon request from 
authors. 
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specified distribution. For example, under heavy-tails assumption, a stress 
event for a long portfolio is defined as:  

 

TsvT vvt σαε 5.01* )/)2)((( −= −  

 

or similarly, under normality assumption: 

 

TsT σαε )(1* −Φ=  

 

Under the empirical approach, the initial shock is simply the upper 
or lower sα  percentile of the empirical distribution depending on whether 
the asset position is short or long.  

Variance at time T, 2
Tσ , can be taken as either the volatility 

estimate at time T or the equally weighted historical volatility to reflect 
normal market conditions in the long term.  Typical values for sα  are 
0.0002 (0.9998) and 0.0005 (0.9995) for long (short) portfolios, implying 
a loss that we are respectively 99.98% and 99.95% confident that our 
actual loss stay beneath over one day.     

Table 4 reflects the magnitudes of an initial shock for a long 
portfolio in corresponding contract based on two different distributional 
assumptions. Shocks drawn from normal density are also included for 
comparison. The numbers are calculated using full samples. Note that 
both the fitted Student’s t and the empirical distribution give much more 
conservative results, as one could expect. To illustrate, the first day of a 
stress horizon under Student’s t assumption is characterized by an initial 
decrease of 18.09% in the value of heating oil futures, if we would have 
chosen 99.98% confidence level. It is clear that the selection of sα  level 
reflects the way market risks are perceived by a firm. 
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Table 4: Initial Shocks for the Stress Tests 

Gaussian Student’s t Empirical Gaussian Student’s t Empirical

long Crude Oil (%) 8.01 14.43 25.58 8.62 17.12 35.16

long Natural Gas (%) 12.53 23.15 16.33 13.48 27.59 18.46

long Heating Oil (%) 7.7 15.04 21.79 8.29 18.09 24.18

alpha=0.0002alpha=0.0005

 
 

6.2 Modeling The System Response 

The analysis in part 5 confirms that among all approaches to 
capture extreme events, the risk models that have heavy-tails and an 
asymmetric structure seem to be more suitable. Thus, we include stress 
tests results only for these entail the two properties above. Once the stress 
event is imposed on the system at time T (i.e. the innovation at time T 
faces an artificial shock which has a magnitude defined in section 6.1), 
conditional variance at time T+1 will increase. This process can be 
defined for simple EGARCH(1,1) process as:  
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In the following day in stress horizon the evaluation proceeds with 
innovations drawn from selected distribution (Student’s t here) and an 
appropriate variance: 
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A similar process can be defined for the conditional empirical 
model where the initial shock and succeeding innovations are drawn from 
the sample of scaled returns. We do not include details for reasons of 
space. Both processes above are iterated until we have s returns, i.e. until 
we have an initializing stress innovation and a return for every single day 
in the risk horizon, and then these returns are aggregated to obtain a 
single s-day return. However, this process should be simulated for a 
number of potential paths to explore plausible large price discontinuities. 
Thus, we simulate the same path for 50.000 times using Monte Carlo 
simulation to get 50.000 potential s-day returns. Then, for a long (short) 
portfolio, absolute value of the lower (upper) 99% percentile of the 
sample returns is selected to reflect the loss that we are 99% confident 
that we will not lose more over s days. 

7. Results And Implications For Risk Capital 
In order to be able to read outcomes more easily, below the basic 

parameters that characterizes a stress test are restated: 

• sα  is the specified percentile for the size of the initial shock (i.e. 
lower or upper sα*100  percentile of the selected distribution), 

• s is the number of holding days where 1=s  is the first day in the risk 
horizon. The initial stress event (plus the mean equation constant, if 
any) is equal to the return of that day.   

 

Figure 1: Long Natural Gas, Evaluation Of Simulated Stress Loss 
Over 10 Days ( 0005.0=sα ) 
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The results of a 10-day stress test for the long and short natural gas 
portfolios are shown in figures 1-4. Outcomes of the stress tests based on 
the two most preferable volatility models are depicted. Although the 
backtest results do not justify the use of the symmetric conditional normal 
model, the potential effects of a stress event under normality assumption 
are also included for comparison. The results in figures 1 and 2 for 
relatively smaller initial shocks are found unsatisfactory since the 
estimations mostly stay below the historical shocks and the best-
performing two risk models appear to yield stress losses which are 
insufficient to compare with past shocks favorably. However, when a 
larger initial shock is considered (figures 3-4), stress loss estimations 
consistently match those observed historically. In long portfolio case, the 
conditional empirical model predicts a risk horizon that is apparently 
more close to historical realizations. The conservative stress losses 
estimated by the EGARCH model seem to be strongly affected by the 
greater initial shock defined by the model. It is also worth pointing out 
that, when compared to short portfolio case, the EGARCH model predicts 
a considerably lower stress loss in the long portfolio case. This is likely to 
result from the positive leverage effect estimated by the model that causes 
the negative initial shocks described for a long portfolio to die away in 
relatively shorter periods. This flexibility in defining a leverage effect 
obviously allows the EGARCH model to predict a much more close stress 
losses to those of conditional empirical model in the short portfolio case 
(Figure 4) which are still consistent with the past returns.  

 

Figure 2: Short Natural Gas, Evaluation Of Simulated Stress Loss 
Over 10 Days ( 0005.0=sα ) 
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The results also indicate that, given an initial shock varying from 
18.46% to 27.59%, the loss for the long natural gas portfolio will 99% 
confidently range between 36.75% and 45.60% over 3 days, 52.73% and 
63.10% over 10 days depending on the model selected.  For a short 
natural gas, expected loss fluctuates in a narrower interval varying from 
48.89% to 52.25% over 3 days and from 68.24% to 71.91 over 10 days. 
Similar interpretations can be put on the results for long/short crude oil 
and heating oil portfolios3. Another important point is that the poor 
backtest results for the symmetric conditional normal model are also 
reflected in the stress loss results. This model clearly underestimates risks 
and provides much lower losses during the simulated stress horizon which 
cannot be found reasonable when compared to past realizations.  

 

Figure 3: Long Natural Gas, Evaluation of Simulated Stress Loss 
Over 10 Days ( 0002.0=sα ) 
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Table 5 exhibits the stress test results for all possible combinations 

of risk models, portfolios and characterizing parameters. The maximum 
historical losses occurred throughout the sample period are also depicted. 
To illustrate, consider short crude oil case with an initial shock reflecting 
the typical upper 0005.0=sα or 0002.0=sα percentiles of the selected 
distribution. According to the EGARCH model, depending on an initial 
stress loss ranging from a 15.34% to 18.38%, we are 99% confident that 
the upper bound for stress loss will vary from 28.43% to 31.99% over 3 

                                                            
3 Full results for crude and heating oil are available upon request from the authors. 
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days and from 40.61% to 44.85% over 10 days. It is also worth noting 
that, in some cases, models appear to be too conservative when compared 
to the historical realizations over the sample period. Thus, the question of 
whether the stress testing methodology is too sensitive to the changes in 
volatility of the underlying series springs to mind.  

 The results mark higher bounds for maximum potential losses in 
the most liquid energy contracts than those observed in major exchange 
rates. This result is particularly important for institutions that are highly 
engaged in energy-derivatives for a number of purposes varying from 
hedging physical positions to trading assets for capital gains. Besides, 
there are some important risk capital implications embedded in the stress 
test results. Here we refer to Basel II capital rules which recommend a 
more direct link between stress tests and risk capital. Taking account of (i) 
reduced market liquidity in a prolonged period of severe market 
conditions, (ii) the size of the portfolio and (iii) potential delays in 
managerial reactions, we use a 10-day risk horizon4 to draw some 
conclusions for the minimum capital requirements. The 10-day stress loss 
estimations imply a lower bound for capital that must be set aside for 
single asset energy portfolios ranging between 45%-78% of the portfolio 
value, which means that significant capital buffers are needed.  

 

Figure 4: Short Natural Gas, Evaluation of Simulated Stress Loss 
Over 10 Days ( 0002.0=sα ) 
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4 Basel II Capital Accord recommends the use of an instantaneous price shock for 
regulatory capital calculations which is equivalent to a 10-day movement in prices (Prg. 
718.LXXI, 2004) 
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Table 5: Stress Test Results 

    EGARCH Empirical 
lo

ng
 C

ru
de

 O
il 

Maximum historical loss over 3 days: 43.18%, over 10 
days=42.82% 

Stress loss (99% confidence)      

s=3,alpha=0.0005 30.33% 46.23%  

s=3,alpha=0.0002 34.02% 59.77%  

s=10,alpha=0.0005 43.97% 63.87%  

s=10,alpha=0.0002 48.47% 77.77%  

sh
or

t C
ru

de
 O

il 

Maximum historical loss over 3 days: 32.50%, over 10 
days=38.94% 

Stress loss (99% confidence)      

s=3,alpha=0.0005 28.43% 40.99%  

s=3,alpha=0.0002 31.99% 43.16%  

s=10,alpha=0.0005 40.61% 56.41%  

s=10,alpha=0.0002 44.85% 59.33%  

lo
ng

 N
at

ur
al

 G
as

 

Maximum historical loss over 3 days: 35.06%, over 10 
days=40.86% 

Stress loss (99% confidence)      

s=3,alpha=0.0005 41.37% 34.12%  

s=3,alpha=0.0002 45.60% 36.75%  

s=10,alpha=0.0005 59.11% 49.23%  

s=10,alpha=0.0002 63.10% 52.73%  

sh
or
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N
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al
 

G
as

 Maximum historical loss over 3 days: 48.31%, over 10 
days=55.90% 
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Stress loss (99% confidence)      

s=3,alpha=0.0005 44.08% 40.86%  

s=3,alpha=0.0002 48.89% 52.25%  

s=10,alpha=0.0005 63.95% 59.38%  

s=10,alpha=0.0002 68.24% 71.91%  

lo
ng

 H
ea

tin
g 

O
il 

Maximum historical loss over 3 days: 37.56%, over 10 
days=40.13% 

Stress loss (99% confidence)      

s=3,alpha=0.0005 30.43% 41.83%  

s=3,alpha=0.0002 34.74% 45.47%  

s=10,alpha=0.0005 45.92% 58.70%  

s=10,alpha=0.0002 51.31% 62.56%  

sh
or

t H
ea

tin
g 

O
il 

Maximum historical loss over 3 days: 31.87%, over 10 
days=48.99% 

Stress loss (99% confidence)      

s=3,alpha=0.0005 31.80% 30.47%  

s=3,alpha=0.0002 36.53% 32.32%  

s=10,alpha=0.0005 48.73% 44.46%  

s=10,alpha=0.0002 53.96% 46.82%  

Note: Maximum historical losses in bold observed at the beginning of Gulf War in 
January 1991.  

8. Conclusions 
Given the current volatile nature of energy markets, firms must 

indispensably perform stress tests of their portfolios and hold the 
necessary capital to cover their test results to avoid the undesirable results 
of unanticipated but still possible events. Indeed, under the new capital 
accord, financial institutions are required by regulators to establish a 
stress test framework as one of the main components of daily risk 
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management activities. However, most of the stress testing approaches are 
still exposed to risk model misspecification threat and even some of them 
have yet to have an underlying risk model. According to Perignon and 
Smith (2006), unconditional historical simulation method is currently the 
most popular VaR methodology in the industry, which is the most likely 
to be misspecified and unsuited for stress testing purposes, even modeled 
conditionally. The studies by Berkowitz and O’Brien (2002) and 
Berkowitz et al. (2006) reveals the probability that firms’ risk models may 
be misspecified since they do not seem sufficiently sensitive to the 
fluctuations in volatility over time. 

Therefore, this study first aimed at identifying the best performing 
risk model together with the most suitable volatility process. We 
performed the backtests of both heavy-tailed and normal, as well as 
empirical, return assumptions under five models for symmetric and 
asymmetric volatility responses. Analyses were performed using daily 
returns for crude oil, natural gas and heating oil futures contract portfolios 
ranging from 16 to 27 years of observations. Stress losses are calculated 
for 60 possible asset position/risk model/initial shock size combinations.  

We found strong evidence that the conditional empirical model 
outperformed other alternatives in relatively longer estimation windows 
(1000 and 2000 days), while the asymmetric EGARCH model was found 
superior in a smaller estimation window of 250 trading days. The well-
performing two risk models are then used to model the consequences of a 
stress event via Monte Carlo simulation method. We observed that, in 
combination with an appropriate initial shock, the selected models 
provide (in some cases) conservative but still favorable results when 
compared to the historical realizations. Given an initial shock 
corresponding to a typical value of lower (upper) 0002.0=sα  percentile 
of selected distribution for the innovations, in only 2 out of 24 cases gave 
the selected models inconsistent results with past realizations. Both cases 
are characterized by the steep decline at the beginning of the Gulf War in 
1991. It can also be inferred from Table 5 that an initial shock that 
corresponds to the lower (upper) 0005.0=sα  percentile of chosen 
distribution is inadequate to reflect potential shocks, because, in most of 
the cases, the calculated losses during a stress period obviously cannot 
cover the price shocks experienced historically. Stress losses estimated by 
the outperforming models yield significant risk capital requirements for 
energy portfolios, ranging between 48% and 77% of the portfolio value, 
and clearly point the market regulators towards more strict capital rules 
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for energy traders as well as financial institutions that are intensively 
involved in energy markets.  

Finally, our study reveals a number of superiorities that this 
model-based stress testing framework has over traditional methods. In 
traditional methods where hypothetical stress scenarios are employed, risk 
managers may overestimate, underestimate or even ignore the potential 
for some scenarios. That makes them inevitably subjective. Model-based 
approach apparently eliminates this problem and is much more objective. 
Another problem with the traditional stress tests is that the results are 
difficult to interpret because they give us no idea of the probabilities of 
the events concerned. Our model avoids this complexity by allowing the 
management to fix a probability for an extreme shock accordingly with 
the company’s risk attitude and by providing the risk manager with the 
clear understanding of the potential risks surrounding the firm. 
Furthermore, the model-based framework can easily be linked to risk 
management process. This is not quite easy in traditional method because 
market risk measurement is a probabilistic approach whereas the stress 
scenarios are discrete events without certain probabilities each of which is 
likely to generate different outcomes. After all, the model-based approach 
is still vulnerable to risk model specification and significant structural 
changes in the market. An example of this type of model risk can be 
illustrated with reference to the first Gulf War which was broken out in 
1991. At that time, on January 16th –the day before the invasion started, 
the market priced a highly optimistic scenario according to which the 
investors foresee that the war would be short enough with little or no 
damage to the oilfields in the region. This led to the largest historical 
drops in the futures market, with a daily decrease around 40% in oil 
prices, which our stress loss estimations could not capture favorably.    

To conclude, it would be appealing to extend the discussion to 
modeling of tighter liquidity conditions in a more stressful market, which 
could be helpful in the selection of the minimum risk horizon to hedge 
positions. Also, the potential implications of an s-day stress loss for 
capital adequacy creates further incentive explore multi-asset portfolio 
cases where the correlations between assets become important and a 
comparison with a single appropriate VaR-based regulatory capital level 
would then be possible.     
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